|
可以说,我们进入了注意力经济时代,主要的在线服务正在努力吸引人们,尽可能长时间吸引他们的注意力。他们的业务是让用户在其平台上尽可能长时间的频繁操作。但是这也带来了差的体验,这些体验经常伴随着诸如惧怕错过信息(FoMO)或其他困扰情绪,以此来麻痹用户的参与。 注意力经济的“演员”也使用麻痹用户的方法,例如根据使用时长给予奖励。这与老*机中使用的机制完全相同。由此产生的体验会促使服务(赌场)吸引用户不断地寻找下一个奖励。我们的手机已经成为通知、警告、消息、转发、喜欢的“老*机”,有些用户每天平均检查150次,或者更多。今天,设计师可以使用数据和算法来挖掘人们日常生活中的认知漏洞。这种新的能力对机器学习时代的设计原则提出了新要求(参见Aaron Weyenberg 的《优良设计的道德规范:连接时代的伦理原则)。 然而,用机器学习算法设计的体验并不一定会成为一种“赌场”体验。 为时间高效利用而设计 设计一个与众不同的而不是约定俗成的体验有很多方式。事实上,像银行这样的组织有一定的优势:它是一个以数据为基础的行业,且不需要客户花费大量的时间在他们的服务上。Tristan Harris的“时间高效利用运动”在这个层面上具有重要意义。他提倡使用数据紧密相关或完全不相关的体验类型。这种技术可以保护用户注意力和尊重人们的时间。twitter的“当你离开时……”是这种做法的一个很有说服力的案例。其它服务则善于提示与其互动的时间。这种体验不是关注用户留存量,而是关注交互的相关程度。
为内心平和而设计 数据学家擅长检测正常行为和异常情况。在D&A,我们正在努力促进BBVA客户内心平和,这种机制在情况良好的情况下能够提供一种通用意识,并触发更多关于异常情况的详细反馈。 我们认为目前这一代机器学习给社会带来了新的力量,同时也增加了创造者的责任。算法存在偏差并且可能是数据源固有的特征。因此,尤其需要注意使算法对于人们来说更清楚易懂,并且监管者可以对其进行审查,以了解其影响。实际上,这意味着算法产生的内容应该保护用户的兴趣,并且应该解释其评估的结果和使用的标准。 体验设计其他相关的方面如下: 为公平而设计 为沟通而设计 为自动化而设计 (责任编辑:admin) |






