清洗和加工数据——因为从网络问卷调研中回收的数据可能掺杂了随意的答案,所以不能直接做分析,需要清洗。研究者一般会根据填答时长去掉填答过短和过长的样本;根据IP或用户名去掉重复填答的样本;根据投放名单去掉无法匹配的样本。还需要根据题目之间的逻辑关系,清洗掉填答矛盾的样本。当然还得判断是因乱填还是失误造成的矛盾,如果是失误造成的,可以保留此样本,只要对数据重新进行符合逻辑的处理就可以了,如逻辑回填或缺失处理。 接下来,研究者还需要把调研样本与后台数据进行匹配,如果发现调研样本在卖家星级、开店时长、每月成交笔数等关键变量上的分布与全网卖家总体相差太大,会使调研样本的数据结果与实际情况偏差过大。此时,就需要对调研样本进行加权处理,调整调研样本在关键变量上的分布,使之与后台数据相当,从而能够推及目标卖家群体的情况。如果关键变量的分布与全网卖家总体相差不大,可以不做加权处理。 分析数据——分析数据的方法有很多种,常用的有描述性统计、交叉分析、相关分析等,还可以能用到回归分析、因子分析、聚类分析、对应分析、方差分析等。不同方法得到的具体结果可能不同,但只要研究目的明确,得到的结论都能直接、间接地指导交互设计。 本案例中,在淘宝自有的问卷系统中录入设计好的商家服务平台调研问卷,采用站内信的方式向用户投放填答问卷的邀请,能更加直接地得到目标人群的响应,有利于快速收集调研数据。经过6天收集到5509个样本数据,经过严格清洗,最终有效样本5219个。经过描述性统计、交叉分析,得到的结论节选如下: 在商家服务平台调研问卷中,核心题目有遇到困难的方面、急需的服务、使用过的服务、使用过的服务满意度如何等,它们之间会存在逻辑关系,例如:是否因为在某方面遇到了困难而急需这类服务?是否因为没有使用过某类服务而急需这类服务?是否因为不满意使用过的某类服务而急需这类服务?是否没有使用某类服务才在这方面遇到困难的?是否使用了某类服务还在这方面遇到困难?……这些逻辑关系能够衍生出更多的变量和关系,有助于深化分析结果。 结论一、店铺装修和推广营销是卖家急需的服务类别 卖家并非满意度越低对相应服务的需求越急迫,集市卖家表现更为明显; 而使用率较高的服务类别,仍然是卖家急需的服务类别,集市和商城卖家都有此特征,可见目前的服务还不能满足卖家的需求,或者卖家还未找到适合自己的服务。
数据来源:调研数据近三个月有成功交易的集市卖家5117,商城卖家102* 结论二、高低级别集市卖家更急需店铺装修和推广营销服务 集市卖家星级越高,对淘宝数据分析的满意率越低,相应的对这类服务的需求就越高; 集市卖家随星级升高,对各服务类别的满意率普遍呈降低趋势,而对服务类别的急需程度线性趋势不太明显,店铺装修服务和店铺推广营销服务呈“U”型趋势。
数据来源:调研数据近三个月有成功交易的集市卖家5117 5.数据指导设计 ——导航排序充分利用数据结果
在案例中,当产品上线时,一级导航的排列顺序权衡了数据结果和业务规则,左侧明显位置的店铺装修和店铺推广,正是问卷调研中卖家最急需的两类服务。而且,通过定性研究深入了解用户需求,产品改变了最初的规划,将店铺日常运营拆分到店铺推广和管理工具当中,这样管理工具的位置排序也相应地提前了。 ——楼层布置参考了调研结论
最初的产品规划是要突出第三方服务,但经过定性研究和定量数据的分析,发现第三方服务还没有形成规模,影响力不大,仍然要主推官方工具。因此,在后续交互设计过程中,依照调研结论设计展现楼层,将官方工具排在第一层,第三方服务排在第二层。 而且,第三方服务主推的服务类别,也参考了数据结果,排序分别是店铺营销推广、店铺管理工具和店铺装修,此处店铺装修稍微靠后,主要是因为当时店铺装修的服务较少,放在前面会影响楼层的整体视觉美观,即便如此,店铺装修已然在众多服务类别中被放置在当前楼层的明显位置。 ——页尾设计以数据为依据
因为辅助新卖家快速成长是商家服务平台的重要定位之一,数据也显示新卖家对淘宝开店服务的需求相对旺盛,因此页尾处将新店开张排在首位。 同时,考虑到页尾也能帮助用户快速找到服务的入口,所以将数据显示急需的店铺装修服务并入店铺管理,日常运营服务并入营销推广,分别展示在明显位置。 大家会发觉导航与页尾的分类不相同,有疑惑,其实之所以这样设计,是因为这样既可以满足不同卖家对服务归类和查找服务习惯的差异,也是一种尝试,通过点击效果再对分类做重构,体现了互联网产品的试错迭代优势,毕竟对于一个新产品,不可能一次就做到尽善尽美。 事实也是如此,商家服务平台上线后,后续又进行了日常修改,修正了一些交互设计细节。但当业务转型时,就需要对产品进行交互设计重构,这种情况将在下一篇博文中继续讲述。 Copyright © 2012 Taobao UED 渡劫(范欣珩). All Rights Reserved. (责任编辑:admin) |